Research Theme: Cell and Structural Biology

<table>
<thead>
<tr>
<th>Research Project Title: Structure and higher-order organisation of caveolae studied by correlative light and electron microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator/Supervisor: A/Prof Alexander Ludwig</td>
</tr>
<tr>
<td>Co-supervisor/ Collaborator(s) (if any): NA</td>
</tr>
</tbody>
</table>

The goal of this PhD project is to investigate the structure and cellular organisation of caveolae inside cells using state-of-the-art imaging. Caveolae are specialised membrane domains with key roles in endothelia, adipocytes and muscle cells (1,2). Caveolae exist as flask- or cup-shaped invaginations in the plasma membrane but are also frequently found to form large interconnected networks of unknown function. Loss or dysfunction of caveolae causes human diseases, with profound effects on the cardiovascular system, lipid and glucose metabolism and muscle function. On the molecular level, caveolae have been implicated in the control of membrane tension and mechanotransduction, signaling and trafficking. We are interested in a) understanding how caveolar proteins assemble to make caveolae, b) how these protein assemblies are regulated to control the shape and function of caveolae, and c) in the dynamic assembly and function of caveolar networks.

The proposed project is based upon our previous work in which we showed that the caveolar membrane bulb is shaped by a distinct protein complex, which we termed the caveolar coat complex (3,4). The primary goal of this PhD project is to determine the 3D structure of the caveolar coat inside cells using cryo-electron tomography. In addition, the cellular organisation and dynamic assembly of caveolar networks will be investigated using correlative light and electron microscopy (CLEM).

The candidate will gain expertise in molecular and cell biology, protein biochemistry, and state-of-the-art high-resolution microscopy techniques including correlative light and electron microscopy, 3D tomography and cryo-imaging.

Literature

Supervisor contact:
If you have questions regarding this project, please email the Principal Investigator:
aludwig@ntu.edu.sg

SBS contact and how to apply:

60 Nanyang Drive, Singapore 637551
Tel: +65 6316 2800, Fax: +65 6791 3856
Website: http://www.sbs.ntu.edu.sg/Pages/Home.aspx
Associate Chair-Biological Sciences (Graduate Studies): AC-SBS-GS@ntu.edu.sg
Please apply at the following:
http://admissions.ntu.edu.sg/graduate/R-Programs/R-WhenYouApply/Pages/R-ApplyOnline.aspx