Pervushin, Konstantin


Selected Publications

  1. Johansson, M. U., Alioth, S., Hu, K., Walser, R., Koebnik, R. & Pervushin, K. A Minimal Transmembrane beta-Barrel Platform Protein Studied by Nuclear Magnetic Resonance. Biochemistry 46, 1128-40 (2007).
  2. Masse, J. E., Keller, R. & Pervushin, K. SideLink: Automated side-chain assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. J. Magn. Reson. 181, 45-67 (2006).
  3. Hu, K., Galius, V. & Pervushin, K. Structural plasticity of peptidyl-prolyl isomerase sFkpA is a key to its chaperone function as revealed by solution NMR. Biochemistry 45, 11983-91 (2006).
  4. Pervushin, K., Vogeli, B., Heinz, T. N. & Hunenberger, P. H. Measuring H-1-H-1 and H-1-C-13 RDCs in methyl groups: example of pulse sequences with numerically optimized coherence transfer schemes. J. Magn. Reson. 172, 36-47 (2005).
  5. Bromek, K., Lee, D., Hauhart, R., Krych-Goldberg, M., Atkinson, J. P., Barlow, P. N. & Pervushin, K. Polychromatic selective population inversion for TROSY experiments with large proteins. J. Amer. Chem. Soc. 127, 405-411 (2005).
  6. Eletsky, A., Kienhofer, A., Hilvert, D. & Pervushin, K. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance. Biochemistry 44, 6788-6799 (2005).
  7. Vamvaca, K., Vogeli, B., Kast, P., Pervushin, K. & Hilvert, D. An enzymatic molten globule: Efficient coupling of folding and catalysis. Proc. Nat. Acad. Sci. 101, 12860-12864 (2004).
  8. Vogeli, B., Kovacs, H. & Pervushin, K. Measurements of side-chain C-13-C-13 residual dipolar couplings in uniformly deuterated proteins. J. Amer. Chem. Soc. 126, 2414-2420 (2004).
  9. Enggist, E., Thony-Meyer, L., Guntert, P. & Pervushin, K. NMR Structure of the Heme Chaperone CcmE Reveals a Novel Functional Motif. Structure 10, 1551-1557 (2002).
  10. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T-2 relaxation by mutual cancellation of dipole- dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. U. S. A. 94, 12366-12371 (1997).