Liang Zhao-Xun

Share     

Selected Publications

1.    Current understanding of the molecular basis of functional diversification of cyclic dinucleotide turnover proteins. *Römling, U., *Liang, Z.-X., Dow, M., Journal of Bacteriology 2017, 199, e00790-16.
2.    A c-di-GMP-binding adaptor protein directly interacts with a chemotaxis methyltransferase to control flagellar motor switching, Xu, L. H, Xing, L. Y., Zeng, Y., Yam, J. K. H., Ding, Y., Venkataramani, P., Cheang, Q. W., Yang, X., Tang, X., Zhang, L.-H., Chiam, K.-H., *Yang, L., *Liang, Z.-X. Science Signaling, 2016, 9, ra102.
3.    A Cyclic di-GMP-binding adaptor protein interacts with histidine kinase to regulate two-component signaling. Xu, L., Venkataramani, P., Ding, Y., Yong, G., Liu, Y., Deng, Y., Xin, L., Ye, Y., Yang, L., *Liang, Z.-X., Journal of Biological Chemistry, 2016, 291, 26112-26123.
4.    Cyclic di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Zhu, Y., Pham, T. H., Nhiep, T. N. H., Marcellin, E, Chakrabortti, A., Vu, N. M. T., Wang, Y., Waanders, J., Bansal, N., Nielsen, L., K., Liang, Z.-X., *Turner, M. S., Molecular Microbiology. 2016, 99, 1015-1027.
5.    Insight into enzymatic nitrile reduction: QM/MM Study of the Catalytic Mechanism of Nitrile Reductase, António J. M. Ribeiro, Yang, L., Maria J. Ramos, Pedro A. Fernandes, *Liang, Z.-X., and *Hajime Hirao, ACS Catalysis, 2015, 5, 3740–3751.
6.    The expanding role of cyclic dinucleotides in the biosynthesis of polysaccharides and secondary metabolites. *Liang, Z.-X. Natural Product Reports, 2015, 32, 663-683.
7.    Finally! The structural secrets of a HD-GYP phosphodiesterase revealed, Wigren, E., Liang, Z.-X., Römling, U*. Molecular Microbiology, 2014, 91, 1-5.
8.    Visualizing the perturbation of cellular cyclic di-GMP levels in bacterial cells. Ho, C. L., Chong, K. S. J., Oppong, J. A., Chuah, M. L. C., Tan, S. M., *Liang, Z.-X. Journal of the American Chemical Society, 2013, 135, 566-569.
9.    The EAL-like protein STM1697 regulates virulence phenotypes, motility and biofilm formation in Salmonella typhimurium. Ahmad, I., Wigren, E., Guyon, S. L., Vekkeli, S., Blanka, A., Mouali, Y., Anwar, N., Chuah, M.C.L., Lünsdorf, H., Frank, R., Rhen, M., Liang, Z.-X., Lindqvist, Y., Römling, U*.  Molecular Microbiology, 2013, 90, 1216–1232.
10.  Solution structure of a small PAS domain in cyclic di-AMP signaling reveals a ligand-binding site. Tan, E., Rao, F., Pasunooti, S., Soehano, I., Liew, C. W., Lescar, J., *Pervushin, K., *Liang, Z.-X., Journal of Biological Chemistry, 2013. 26, 11949-11959.
11.  Synthesis of (R)-mellein by a partially reducing iterative polyketide synthase. Sun, H., Ho, C-L, Ding, F., Soehano, I., Liu, X. *Liang, Z.-XJournal of the American Chemical Society, 2012. 134, 11924-11927.
12.  Binding of c-di-GMP to the non-catalytic EAL domain of FimX induces a long-range conformational change. Qi, Y., Xie, K., Luo, Z., Tang, K., *Liang, Z.-XJournal of Biological Chemistry 2011, 286, 2910-2917.
13.  MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by inducing type 3 fimbriae biosynthesis. *Wilksch, J. J., Yang, J., Clements, A., Gabbe, J. L., Cavaliere, R., Whitchurch, C. B., Schembri, M. A., Chuah, M. L. C., Liang, Z.-X., Wijburg, O. L., Jenney, A. W., Lithgow, T., Strugnell, R. A., PLoS Pathogens 2011, 7, e1002204.
14.  Complexity and simplicity in the biosynthesis of enediyne natural products. *Liang, Z-XNatural Product Reports 2010, 27, 499-528.
15.  YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity Rao. F., See, R.Y., Zhang, D., Toh, D. C., Ji, Q., *Liang, Z.-XJournal of Biological Chemistry 2010, 285, 473-482.
16.  Structure and catalytic mechanism of the thioesterase CalE7 in enediyne biosynthesis. Kotaka, M., Kong, R., Qureshi, I., Ho, Q. S., Sun, H., Liew, C. W., Goh, L. P., Cheung, P. Mu, Y., Lescar, J. *Liang, Z-XJournal of Biological Chemistry 2009, 284: 15739 - 15749.
17.  Catalytic mechanism of c-di-GMP specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. Rao, F., Yang, Y., Qi, N, *Liang, Z-XJournal of Bacteriology 2008, 190, 3622-3631.
18.  Characterization of a carbonyl-conjugated polyene intermediate in the biosynthesis of 10-membered enediyne antitumor natural products. Kong, R., Goh, L. P., Liew, C. W., Ho, Q. S., Murugan, E., Li, B., Tang, K., *Liang, Z-XJournal of the American Chemical Society 2008, 130, 8142-8143.
19.  Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase. Liang, Z-X.; Lee, T.; Resing, K. A.; Ahn, N. T.; *Klinman, J.P. Proceedings of the National Academy of Sciences USA 2004, 101, 9556-9561.
20.  Impact of protein flexibility on hydride-transfer parameters in thermophilic and psychrophilic alcohol dehydrogenases. Liang, Z-X.; Tsigos, I.; Bouriotis, V.; *Klinman, J.P. Journal of the American Chemical Society 2004, 126, 9500-9501.
21.  Structural bases for hydrogen tunneling in enzymes: progress and puzzles. Liang, Z-X.; *Klinman, J.P. Current Opinion in Structural Biology 2004, 14, 648-655.
22.  Dynamic docking and electron transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes. Liang, Z-X.; Kurnikov, I. V.; Nocek, J. M.; Grant Mauk, A.; Beratan, D. N.; *Hoffman, B. M. Journal of the American Chemical Society 2004, 126, 2785-2796.
23.  Dynamic docking and electron transfer between myoglobin and cytochrome b5Liang, Z-X.; Nocek, J. M.; Huang, K.; Hayes, T. R.; Kurnikov, I. V.; Beratan, D. N.; *Hoffman, B. M. Journal of the American Chemical Society 2002, 124, 6849-6859.
24.  Electrostatic control of electron transfer between myoglobin and cytochrome b5: effect of methylating the heme propionates of Zn-myoglobin. Liang, Z-X.; Nocek, J.M.; Kurnikov, I.V.; Beratan, D.N.; *Hoffman, B.M. Journal of the American Chemical Society 2000, 122, 3552-3553.

* designates corresponding authorship

Patents

1.        Engineering of a thermophilic diguanylate cyclase for large-scale production of cyclic-di-GMP. Liang, Z-X and Rao, F. 2014, US Patent 8,859,237.
2.        Efficient enzymatic synthesis of cyclic and linear diadenosine monophosphates by thermophilic enzymes. Liang, Z-X and Pasunooti, 2011, Pending, PAT 61/553/385/US PRV.